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We analyze a recently introduced mean-field model of a membrane with quenched random curvature.
We find the replica-symmetry-breaking solution and the equivalent Almeida-Thouless line. This line
separates a flat phase from a new mixed (glassy-flat) phase with broken ergodicity. This new phase may
correspond to the observed wrinkled phase of partially polymerized membranes.
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INTRODUCTION

Some partially (or incompletely) polymerized mem-
branes seem to exhibit a low-temperature wrinkled (or
wrinkled-flat) phase, characterized by randomly frozen
normals. Examples include membranes of diacetylenic
phospholipids [1,2] and of butadienic lipids [3] and possi-
bly atom-thick silicon oxide [4] and graphite oxide [5]
membranes. That phase might also describe the amor-
phous graphitic sheets, which have recently been shown
to anneal (upon complete polymerization) into closed
onionlike structures [6]. A partially polymerized mem-
brane might be like a piece of the surface of a dried prune
(wrinkled on the small scale, but flat on a large scale), in
which case we shall call that state a wrinkled-flat phase:
the average normal is nonzero. Or it could be similar to a
crumpled piece of paper (wrinkled at all scales, i.e., aver-
age normal zero), in which case we shall refer to it as a
wrinkled phase. It is important to notice that this phase
is very different from the so-called crumpled phase [7] of
a membrane, in which the local normals to the membrane
Auctuate in time. It might be helpful to keep in mind the
magnetic analogy where the paramagnetic, ferromagnet-
ic, spin-glass, and mixed phases are the analog of the
crumpled, flat, wrinkled, and wrinkled-flat phases, re-
spectively.

It has been argued [8—10] that partial polymerization
generates membranes with quenched-in randomness.
That randomness may manifest itself in various ways. By
stabilizing defects (dislocations, grain boundaries, etc.) it
will appear as locally quenched inhomogeneities in the
two-dimensional (2D) elastic properties of the membrane,
i.e., randomness in the local metric of the membrane [9].
In certain systems, partial polymerization might also in-
duce a random local spontaneous curvature [2]. This
could be the case for diacetylenic phospholipid mem-
branes, where the polymerized patches are similar to ran-
dom roof tiles [2,11]. Such might also be the case for the
atom-thick silicon oxide [4] or graphitic membranes [6],
where dangling bonds (from incomplete polymerization)
or local dislocations will induce a local curling of the
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membrane [6].

This quenched randomness, by inducting contradicting
local constraints on the membrane, i.e., frustration, may
be responsible for the existence of an analog of the spin-
glass phase of magnetic systems, which owes its peculiar
properties to the presence of frustration. Indeed, it is il-
luminating that the very concept of frustration was intro-
duced [12] in the context of a two-dimensional square lat-
tice, where each plaquette had a random discrete curva-
ture (in internal space).

Up to now, all attempts [8—10,13,14] to assess the pos-
sible existence of a wrinkled (glassy) phase for disordered
membranes, and to describe its properties, were based on
a replica-symmetric (RS) Ansatz which is known to be an
incorrect representation of the spin-glass phase of ran-
domly frustrated magnetic systems. The purpose of this
paper is to solve correctly, namely, with a Parisi Ansatz
[15-17] [replica-symmetry breaking (RSB)], a model of
randomly frustrated membrane. The model, describing a
membrane with quenched random spontaneous curva-
ture, has been introduced previously [8] and is character-
ized by the following Hamiltonian:

H=—«" 3 n;n;+ ¥ V(r,—rg)

(i, j) (a,8)
— 3 Dj;*(n; Xn;) , (1)
(i,j)

where summation is over nearest neighbors. r, denotes
the position of the ath vertex, n; is the normal to the ith
plaquette, «' is the bending rigidity, V' (r) is a tethering
potential between nearest-neighbor vertices (contributing
to the elastic compression and shear moduli), and D}j, a
random vector attached to the membrane, includes a lo-
cal random curvature. Hamiltonian (1) is thus rotational-
ly invariant. In the long-wavelength limit it reduces to
the usual Landau-Lifshitz elastic theory of crystalline
membranes with random spontaneous curvature [8,10].
That limit was recently studied by Morse, Lubensky, and
Grest [10], within a replica-symmetric Ansatz and by nu-
merical simulations of Eq. (1). (In their simulations, the
random vector Dj; between two neighboring plaquettes
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A 4pc and Agp- was given by D'=at 4, +bTpc, where a
and b are random numbers and T ,;, and T¢ are the unit
vectors along the bonds 4D and BC, respectively.) The
existence of a new T =0 disordered flat phase has been
demonstrated. For T >0, there is a crossover between a
behavior characteristic of the T"=0 disordered flat phase
on length scales L <L (T) (with L,— o« as T—0) and a
behavior at scales L >L_ dominated (depending on the
strength of the disorder) either by the T >0 flat phase or
by a new, possibly spin-glass phase. However, in analogy
with the spin-glass problem, one does not expect the RS
solution to provide a correct description of that new
phase [15-17]. It would be very useful to find a replica-
symmetry-breaking solution of a short-range model such
as (1), but that has so far not been achieved. In the fol-
lowing we shall thus take the more conventional route
and consider a mean-field version of Hamiltonian (1).
We will present a rather detailed description of the spin-
glass approach to disordered membranes, introducing the
replica method and the various Ansdtze used to solve the
resulting equations. Though there are many excellent re-
views [15—17] on the spin-glass problem, we shall try to
be as didactic as possible.

MEAN-FIELD APPROACH

In accordance with the usual mean-field approach, we
write a mean-field Hamiltonian of Eq. (1) by replacing the
summation over nearest-neighbor normals with a summa-
tion over all possible pairs of normals (thus forfeiting all
spatial information):

’

== 2 00— 3 Dij(n;Xn;) . @)
(i.J) (.7)

Notice that the effect of the tethering potential [second
term in Eq. (1)], which introduces long-range interactions
between the normals [7], is naturally taken into account
by the long-range forces implicit in the mean-field ap-
proximation. Notice also that for small deviations
f(x,y) of the membrane from the flat configuration, the
normals in Eq. (1) are given by n=~(—4d, f,—9,f,1) and
thus VXn=0. The vectors n; are thus not independent
variables. This constraint is, of course, important in con-
sidering the effect of fluctuations. But within the mean-
field approximation, where one is interested in obtaining
the possible thermodynamic phases, the constraint may

|
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be relaxed as long as it is satisfied a posteriori in all phases
(which is so in our case, due to the spatial independence
of the mean-field solutions). Admittedly this is a drastic
approximation. However, it is known [7] that the mean-
field approach, Eq. (2), yields a correct quantitative
description of the thermodynamic behavior of tethered
membranes of inner dimensions D >4. The extension of
the mean-field results to realistic membranes (with D =2)
is an open problem. Due to the long-range interactions
between the normals mediated by the in-plane elastic
modes (tethering potential), one might hope that the
mean-field phase diagram still applies qualitatively in
D =2.

With the identification of the normals with Heisenberg
spins (i=S/V'3), our Hamiltonian (2) is identical to the
mean-field Hamiltonian of a Heisenberg spin-glass
[15-17] with random Dzyaloshinsky-Moriya (DM) in-
teractions [16,18,19]. In the following we will use the
spin notation with the normalization S-S=3 and intro-
duce k=«'/3 and D;; =Dj; /3.

The thermodynamic properties of models such as (1)
and (2) are determined by the disorder-averaged free en-
ergy [15-17] [#],,=—kpT[InZ],,. The trick one uses
to calculate that quantity is the replica method. Using
the formula

lim ([Z"],,=1)/n=[InZ],,=—B[F],, , 3)

n—0

one needs to calculate the partition function Z" of n
identical, noninteracting systems (replicas), average over
the disorder, and take the limit » —0 by analytically con-
tinuing [ Z"],, to zero. For the mean-field model (2),

N n B K
Z"= [ I II dSfexp 53 3 SESF D, (SFXSH)

i=la=1 ij
i#j

4)

Here i indexes the spin site and a the replica. With a
Gaussian probability distribution for the D;;’s,

—3/2 D[zj
, (5)

exp

27?2
N

PDy)= 2NT?

the average over the disorder yields

(Z"],= [ d°D P(D)Z"=exp[ $nN(BT )2]fH dSfexp( A) ,

ia
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(6)

where u (=x,y,z) is the spin component and we introduce the notation 3,;=3,.5 We now use the Hubbard-
Stratonovich transformation [15-17] exp(*Aab)=(A/2mi) f dx dy exp[ F AMxy —ax —by)] to express the spin traces
over N sites in terms of single-site traces. Thus, for example, the sum over « in the first term in 4 can be written as
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3/2
fHdS?‘exp BKN ES“ E;—;V— ffHdm dSfexp —Mmz—i—BKEm S“’
i,a i=1
%’i f[[dm exp B"N §+N1nfdsaeﬂm“'sa] (7)

and similarly for the other terms. Next, the saddle-point approximation is used to express [Z"],, in the thermodynam-

ic limit, N — o (at fixed n >0). Finally, the disorder-averaged free energy per spin, f =

by analytically continuing [ Z"],, to zero:

22 o+

a py

n f=%5 > mZ%—2n(Br)*—

where we have defined the effective Hamiltonian for n spins:

(BT

gt a=pr S miss— P s 5 gn s+ LS

a pu,v

The Hubbard-Stratonovich auxiliary variables m %, sz, and R;f

of _ of _ _df _
am*  3Q¢, dRP

=(8%),05,=

’

which imply that m

(BT)*
4

3 S (REsash—
a,B u,v

F1../N, is obtained via Eq. (3)

zﬁ' S (RERE—RR%)—In [ [ dS%exp(—BH ) ,
a,p u,v a

(8)

e v Zﬁs‘i‘sﬁ ). 9)

B (aP) are given by the saddle-point conditions

(10)

(525%), and Rg5 =(S%S%), where the angular brackets stand for a thermal aver-

age with respect to the eﬂ”ectlve Hamiltonian # .4 This justifies their physical interpretation as the average magnetiza-

tion, quadrupolar, and spin-glass order parameters.
Q4,=0Qa8,, and R"‘B— “38 +A"BS
Qa‘(l+2q l—q"‘ l—q"‘).

Due to the rotational invariance of Hamiltonian (2), we may set
. (with E#Aﬁﬁ =0). Moreover, because of the normalization > ij =3, we let

To proceed further, we perform a cumulant expansion of Eq. (8) to o(B®). That expansion and the computation of
the various spin traces are sketched in Appendix A. The outcome of that rather tedious calculation is

_ Byky 2 B“;
Bf = 3 (1—=B,k, Im*+ 20

6
3 _ 2 aB B
+— on B (1 ZB > (r*)y—= n

a,fB a,B,y

For conciseness we set BYEﬁF and k,=«/I". From
that expression we see that only two order parameters
have a critical behavior indicative of a phase transition:
the magnetization m, which becomes nonzero when
B> 1, and the isotropic part of the spin-glass order pa-
rameter r°%, which becomes nonzero when BI'> 1/V2.
Notice that the anisotropic part AZ‘ has no critical
behavior. Thus, in contrast with the Heisenberg spin
glass [15-17] (D;=0 and x=k;; random), there is no
transverse spin-glass (Gabay- Toulouse [20]) phase in our
model. That is a result of the strong coupling [19] be-
tween the longitudinal (parallel to the mean magnetiza-
tion) and transverse spin components, which is absent in
the Heisenberg model.

REPLICA-SYMMETRIC PHASE DIAGRAM

The replica symmetric Ansatz assumes that the spin-
glass order parameter is symmetric under a permutation
of all the replicas, so that Rﬁg =R,,=(r+A4,)5,,
Taking the limit »—0 in Eq. (11) [with
2;,3(ra3)2=n(n —1)r?, etc.] the RS free energy is then

332 1+3BZ)q —

z tpaBpBypray ¥

/34 2,

n3§<1+ﬁﬁ)azﬁ (AP — z'r“B
1888 632
l;ﬁ’ (r"‘ﬁ)“——;-y— a’%ya’r"‘ﬁrﬁyﬂara“—k oo (1D
[
Bfrs = B i —B,k,) 2+ﬁ$ y m*—3BL(1+31B%)q>

20
2 2 VA2 — 2(1—9R2),2

—i—%By(l—l-By)A +Bykimir — 1B (1—2B)r

— 8BS+ 128 4t - (12)

The saddle-point conditions, Eq. (10), imply

9frs /3‘;"‘;
0=F 5 Py 1 =By Jm+=Em?
+2842mr
nr (13)
afRS .

B4K 6Bf,(%*ﬁf,)r
_ 6.2 3 3
248, r +%/37r .

The phase diagram of our model may now be com-
pletely determined [8] (within this RS Ansatz); see Fig. 1.
There is a high-temperature paramagnetic phase (m =0,
r =0), which in the context of non-self-avoiding mem-
branes is the so-called crumpled phase. At a temperature
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FIG. 1. Mean-field phase diagram obtained from a replica-
symmetry-breaking (Parisi) Ansatz. The solid lines denote the
boundaries between the various phase. The dashed line separat-
ing a flat from a glassy phase is obtained with a replica-
symmetric Ansatz.

T=x our model exhibits a transition to a low-
temperature ferromagnetic phase (m¥0) equivalent to
the flat phase of membranes. Below T,=V2T, a spin-
glass phase appears, characterized by m =0 and
r=r+7/5+0(7*) (r=1—T/T,).

From Eq. (13) the Sherrington-Kirkpatrick line
separating the (m=0) flat phase from the (m =0) spin-
glass phase is k/k,—1=17 (with k,=T,). Moreover,
by performing a low-temperature RS calculation of the
free energy, Eq. (9), one can also determine the critical
amount of disorder necessary for the destabilization of
the flat phase at 7=0: T';=2k/V'187. A similar phase
diagram was suggested by Radzihovsky and Nelson [14]
and Radzihovsky and LeDoussal [13], who considered
the effect of randomness in the metric on the stability of
the flat phase of membranes of inner dimensions D > 4.
Thus, in spite of the drastic simplifications made in going

J

AB=C=

t=ab—({ab), where (a)zfoxa(x)dx s
c)=(E—(b)a(x)+@=(a)bx)— [ Ta(x)=a]bx)=b(p)]dy .
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from the full Hamiltonian (1) to its mean-field version (2),
we are able to recover the phase diagram of randomly
disordered membranes and go one step beyond by being
able to break the replica symmetry assumed until now.

Indeed, in analogy with other spin-glass models, one
does not expect the replica-symmetric mean field to pro-
vide an accurate description of the spin-glass region of
the phase diagram. It leads to negative entropies at low
temperature and is unstable with respect to a mode
breaking the replica symmetry [15-17].

SOLUTION BREAKING THE REPLICA SYMMETRY

The Ansatz that is generally believed to minimize the
free energy f [Eqgs. (10) and (11)] has been introduced by
Parisi [15,21]. It looks for a solution »°# in the subgroup
of n X n block matrices of the form

P po P P
Po D P1 P1 P2
P1 P1 P Po
PoB= . (14)
Py P1 Po P

P>

In that representation, the size m; of block i, satisfies
1=my<m;< -+ <my <n. However, the idea of Parisi
was to invert the inequalities in the limit »n—O:
1=my>m,;> -+ >m; >n=0. Representing the ma-
trix P by a pair [p,p(x)], with p(x)=p; for
1Z2m;>x>m;,;20, it is easy to show [15-17] that the
addition and multiplication of block matrices of the form
(14) then reduces (in the limit n —0) to algebraic opera-
tions on their continuous representation:

(15)

Using these relations the various terms in Eq. (11) can be evaluated. Thus

1 ' Bk — 1 k

?253 (refyfi=— [ dx[r(x)]*,

1 ’r“BrBVrV"=fldx [xr3+3rfxr2] .
n G 0 0

The replica-symmetry-breaking free energy frgsg becomes

B.k
Bfrsp =5 (1=Byr, )m*+

20

B?'K;" 4 2 24 2 2 2\ A2
mé—3B(1+3B2)g2+ 2BA(1+B2)A

+Bycm? [['r—3p21-282) [ 'r2—4p; [ lax [xr3+3r NG ] +eBy [t (17
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where e=6V'14 /5 represents the joint contribution of the
terms in r* in Eq. (11) [Tr'r* and 3/, 5(r*#)*] [Usually,
the Tr'r* term is neglected as being less destabilizing to
the RS solution than 3, 5(r®)*. Here, however, it is the
most destabilizing term. It is responsible for the destabil-
ization of the RS solution and the existence of a RSB
phase. However, as far as the calculation of the
Almeida-Thouless line (separating the ferromagnetic
phase from a RSB phase) is concerned, the contribution
of both terms can be summed up in the last term of Eq.
(17). A complete solution and the subsequent evaluation
of € are presented in Appendix B.] The RSB spin-glass or-
der parameter r(x) is determined from the stationary
condition on fggg, Eq. (10):

__OfRrsB
0=
=Bym?—6B,(3—=B)r (x)
x 1
—1285 [xr2+ S r2+2rfxr] +aeBir? . (18)

Differentiating that equation once with respect to r(x)
yields:

[(%—ﬁf,)+43‘7‘, [xr+fx1r]—26/5’f/r2}r’=0 . (19

Thus either r =r, =const or the terms in the square
brackets are null. Differentiating those once more yields
two more solutions: r=ry, or r=x /er,. The full RSB
solution is the piecewise linear function

ry when x; <x <1
r(x)= {x/€eB’ when xo,<x <x,=eBr (20)

ro when 0<x <xo=eBir, .

The two parameters 7, and r; are determined by im-
posing the full stationary condition, Eq. (18), at x =0 and
x =1. One obtains

ri=r+er*/4+0(7),
(21)
ro=(m2/e)'’? .
The transition from the RS solution, r (x)=const (valid
in the ferromagnetic phase) to a RSB phase occurs along

the Almeida-Thouless (AT) [15-17,22] line ry=r, i.e.,

r=(m2/e)'*=(5m?/6V'14)!/? . (22)

Below that line (at lower temperatures or stronger disor-
der) the system ““freezes” in a configuration with nonzero
average magnetization, but broken ergodicity. We call
that mixed state a wrinkled-flat phase. Notice that the
AT line has the same dependence (7~m?2/3) as the AT
line of an Ising model. This was expected [19] because of
the strong coupling between the spin components men-
tioned previously. The fact that our random
Dzyaloshinsky-Moriya model behaves in the same way
[18,19] as an Ising model allows us to draw on the
knowledge of the random Ising model to determine the
behavior of the AT line as T and I go to zero:
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T~Te </2T 23)

Thus one expects the existence of a wrinkled-flat phase as
T —0 even for infinitesimal disorder (see Fig. 1). This is
at odds with the replica-symmetric results that at 7 =0
the flat phase is stable to infinitesimal disorder. But, of
course, the RS Ansatz is unable to describe the RSB
mixed phase. Finally, the line separating that phase (with
m70) from the RSB spin-glass phase (with m =0) can
be established by studying the magnetic susceptibility
[15-17] x " !'=082frsp /0m? in the spin-glass phase:

g 1
(kx) 1 BK+/3Kf0 dx r(x)
=1—k,/V2. (24)

Thus the magnetic susceptibility changes sign (i.e., m#0)
when k=k_; see Fig. 1.

DISCUSSION

The replica-symmetry-breaking results described here
were obtained within a mean-field approximation (valid
for membranes of inner dimension D >4). As usual with
spin glasses, it is not clear how relevant these results are
in lower dimensions and, in particular, to non-self-
avoiding D =2 membranes (even less so to real self-
avoiding ones). However, one might hope that because of
the existence of long-range interactions between the nor-
mals mediated by the in-plane elastic modes, the real
phase diagram could be similar to these mean-field re-
sults.

One particular point that might be numerically tested
is the existence of a RSB phase at 750 for infinitesimal
disorder. As previously mentioned the RS solution of
Morse et al. [10] predicts the existence for D =2 mem-
branes of a new disordered flat phase at T'=0. It is
tempting to conjecture that a full RSB solution might ex-
tend the domain of existence of this phase to T#0, thus
encompassing the wrinkled-flat phase described above.
That conjecture could be tested numerically, though the
very long equilibration times of membranes and spin-
glass Monte Carlo simulations might make their com-
bination too formidable for today’s computational
resources [23].

From an experimental point of view, it should be possi-
ble to reconstruct the surface of a wrinkled membrane, ei-
ther by freeze-etching and electron microscopy or by
scanning atomic-force microscopy. This may enable one
to extract the relevant microscopic information on the
membrane (i.e., the orientation of the normals) and allow
for a qualitative comparison with the spin-glass ideas ex-
posed here. For example, by thermally cycling a wrin-
kled membrane one might be able to measure the spin-
glass order parameter r(x), namely, the overlap between
different ground-state configurations. A nontrivial
behavior of this overlap function would support the inter-
pretation of the wrinkled state as a glassy phase.
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APPENDIX A: CUMULANT EXPANSION
OF THE FREE ENERGY

The free energy of one replica is given by

Bk, m?
Bf =3By5+q —a)+———
BZ aﬁ 1
3T | TP~ ——In(e¥), (A1)
2
a,B n

which is Eq. (8) rewritten with the following notations:

B — aB __ B
T% =TtR*¥—3R% ,

3[)’2
qu S (827

a

X=Bk,m 3y S~

Tsast

B
By

Ty 22T

B u

and where m and g are independent of the replica index

a. Then, we make the cumulant expansion of the loga-
rithmic term appearing in the expression of the free ener-

gy:
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In{(e®)=(X)+1{(X — (X)) +1{(X —(X))?)
+ L{X —{(XN*) =3(X —(X))*))+o(Xx*)
=(X)+ LX)+ LX)+ LX)
+o(XH+o(n) . (A2)
Now, let us evaluate the quartic term. For this, we set
X=a+b+c,
aEBT,Kym >.87,

(A3)
b

—*%qﬁi > (S2)?,
a
c=1BL 3 3 TPsISE .
aB p
Due to the integration over n spheres, with the con-
straint a7f3 in ¢, and the need to pair the spin com-
ponents over each sphere, only the following terms ap-
pear in the expansion of (X*), the other ones being equal
to zero:’
(X*)=(a*+b*+c*+6(a’b?+b%?+c%a?)
+4bc3+12a%bc ) . (A4)

Let us develop the example of {c*), the other terms
being easier to compute:

Bg ’ ’ ’ ’
(c*) =1—g S 3333 TRTRPTETI(S588575555555780 ) . (A5)
wv,po B v, €6 1,6
The pedestrian method we use to evaluate this expression consists of a decomposition of the sum over (qa, . . ., 0), for
fixed (u, . .., o), into pieces where the number of different spheres, over which we effectively integrate, is fixed:
B ,
(M="¢ 3 |83 TPTPTITE(S,S,S,5,)7+48 3 8,8, T TFTTE(S,S,S,S,)
WV, P, 0 a,B a,B,y
+12 3 ' TTTI T (SSAS2SASTS0STSS )
a,pB,y,8
+48 3 ' TTH TP T (SASESESTSTS)S0ST) (A6)
a,B,y,8

Now, we decompose the sum over (y, . . .
the normalization |S|>=3, we obtain

("=, 50 LSS (T@ATE R+ 2 STy
a,B u,v a/J’ I3
+2 5 z(Tgﬁrﬁr)ZJri
3 aBy u B, 7,8 u,v

S S(TETPY+3 3 3 THTI TR TS

, o) into sums over a fixed number of different indices. Taking into account

LII\D

2 ’ 2: ( Tzﬁ )2( le‘y )2

By wv

(A7)

a,B,7,8 pn

Developing in the same way the other terms of the expansion of { X*), we obtain the following expression for [ T*]:

=Tr'(T;:+2Ty“)+i

(7] :

a,By

The same procedure applied to [ 73] and [ T?] gives

2, [(T;’BTEY)Z_Z( TfBTyBy)z“i‘(T)f’ETfy)z]—k%

zﬁ' (T8 =32 TEPT Py —14(TF)*] .

(A8)
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[T]=Tr (T} +2T))— ¥qBTr (T —T}) ,

2

T 2
[T?]=Tr Tx—TxTy S THTI+2T))+ByBye,m ) 3, TEPTY
a,By
B2[3qBL—(Bk,m1Tr(T:—T})+ Zq*BSTr(8T2—T?) . (A9)

If we make the change of variables r = (T, + T, /2) and A=}(T, —T,), then to leading order the term [T?]is
[T2)=3(1+BL)Tr' A2 +3(28, — Tr'r+ - -+, (A10)

which shows that 7, but not A, undergoes a phase transition when 3, = 1/V2. Taking this into account, the relevant
terms in [ T3] and [T*] are

[T?]=24Tr'r*+ -+,

[T*]1=48 > Iraﬁrﬁ‘yr}’araa_%ZI(raﬁ)lt_i_ (A11)
a,B,v,8
The fourth-order cumulant expansion of the free energy is
P B, B8
Bf =P, +72 3 TP - ST By ol T]= ZEIT o (n)+o (XY, (A12)
a,B
where P and P, are given to leading orders by
k (Bkm)*
=B —poom?+ B _sgi4apgi4 -
(A13)
Py B m

Inserting equalities (A10), (A11), and (A13) in Eq. (A12) yields Eq. (11).

APPENDIX B: RSB SOLUTION

We proceed to the application of Parisi’s Ansatz. The use of Egs. (15) and (16) allows us to write the last expression of
[T*#], Eq. (A11), in its continuous form:

— =48 [ [ lax 200 [ rbs o0 =3 [t [ lax [2r2x [+ [ =i Pay ||

— La_ 12)?_ 1 x 20y — 2 2(5)12 — 2
—u [l 144[f0r ] 96 [['dx [ ay(r2x)—rp)] 48f0dx [2r(x)f0r+s(x)] . (B1)
We have introduced the function s (x)= f @y [rix)—r( ¥)1%, and used the following formula derived from Eq. (15):
— 3 reyPrpretas [lax [2r(x)f0‘r+s( ] + [ ax [Zr [ 1r+ [0 —rio Py | (B2)
a,B,7,6

In order to find the extrema of the free energy, we equate to zero its functional derivative with respect to r (w):

— 8f — x 1
0=p5 L =Blcm*+36,28,— r(w)— 126} | xr*+ ["r+2r [ ]
5F
+18% -3-;‘ir3(w)+192r(w)f ri+ag ot

;T_‘tf [2r(w)f r+f r2+2wrX(w)—2r( w)f r—2f r2+2r(w )flr +s(w)]
+4 [f dxr(x)s (x)+wr(w)s(w f r—f rs +r( w)f ] (B3)
[
If we take the derivative with respect to w of this expres- when r is not a constant, it must verify a very simple
sion, we notice that »'(w) factorizes, so either r is a con- differential equation:

stant over some interval, or r verifies a new integral equa- R . ,
tion. Repeating this process twice again, we find that (3+x)r"(x)+3xr'(x)=
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whose general solution is

rx)=—2_ +p .

\/x2+%

The final step is to replace this expression for 7 in the in-

tegral equations that it verifies to determine the constants
a and b. One finds a =5/3V'35 and b =0. Near the mul-
ticritical point (k,=T,=V2T'), where the expansion
leading to Eq. (11) is valid, » << 1; thus r(x)~5x /3V'14.
The same behavior is obtained by fixing the value of € in
Eq. (11) to 6V'14/5.
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